O.P.Code: 23CI0603

R23

H.T.No.

SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY:: PUTTUR (AUTONOMOUS)

B.Tech.II Year II Semester Regular Examinations July/August-2025 PRINCIPLES OF OPERATING SYSTEMS

(Computer Science & Information Technology)

(Computer Science & Information Technology)						
Time: 3 Hours Max			ax. Mar	k. Marks: 70		
<u>PART-A</u>						
		(Answer all the Questions $10 \times 2 = 20$ Marks)				
1	a	What is an Operating System?	CO ₁	L2	2M	
	b	Differentiate between kernel mode and user mode.	CO1	L1	2M	
	c	Name any two thread libraries.	CO ₂	L1	2M	
	d	Mention any two CPU scheduling algorithms.	CO ₂	L1	2M	
	e	What are the three necessary conditions that a solution to the critical sectio problem must satisfy?	n CO3	L1	2M	
	f	What is a binary semaphore? Give one example of its application.	CO3	L1	2M	
	g	What is thrashing?	CO4	L1	2M	
	h	Name any two HDD scheduling algorithms.	CO4	L1	2M	
	i	List any two file access methods.	CO ₅	L1	2M	
	j	What are the basic file operations?	CO ₅	L2	2M	
		(Answer all Five Units $5 \times 10 = 50$ Marks) UNIT-1				
2	a	List and Explain the main functions of an operating system with suitable examples.	e CO1	L2	5M	
	b	Explain different operations performed by the operating system. OR	CO1	L4	5M	
3	a	Discuss the types of Operating System in detail.	CO1	L3	5M	
	b	Describe the main types of computing environments. UNIT-II	CO1	L4	5M	
4	a	With a neat sketch, explain process state diagram.	CO ₂	L2	5M	
	b	Explain Process Control Block with neat diagram. OR	CO2	L4	5M	
5	a	Describe about the different types of Schedulers in operating system.	CO ₂	L4	5M	
	b	Analyze the different types of process operations in operating system. UNIT-III	CO2	L3	5M	
6	a	What is Critical section problem? Explain with example	CO3	L2	5M	
	b	What are Mutex Locks? Explain the different types with example OR	CO3	L4	5M	
7		Describe about Deadlock Prevention Methods.	CO ₃	L3	6M	
	b	Explain Producer Consumer problem using semaphore	CO ₃	L4	4M	
		UNIT-IV				
8	a	What is memory management? List and discuss about various techniques of managing memory in operating systems.	f CO4	L3	6M	
		Explain about contiguous memory allocation in detail . OR	CO4	L4	4M	
9		What is paging, and how does it improve memory management? Give an example.		L3	5M	
	b	Explain page table structures and how they manage large memory space efficiently.	s CO4	L4	5M	
10	a	What is file? Explain its structure and attributes in detail	CO5	. L2	5M	
		Analyze the different file types available. OR	CO5	L4	5M	
11	a	What are the different file access methods? Explain with examples.	CO5	L3	5M	
	b	Describe types of directory implementation with a neat diagram.	CO5	L3	5M	
		*** END ***				